基本函数导数
c′=0
(xn)′=nxn−1
(√x)′=12√x
(1x)′=−1x2
(sinx)′=cosx
(cosx)′=−sinx
(lnx)′=1x
(logax)′=logaex
(ax)′=axlna
- (ex)′=ex
(tanx)′=sec2x
(cotx)′=−csc2x
(secx)′=secxtanx
(cscx)′=−cscxcotx
(arcsinx)′=1√1−x2
(arccosx)′=−1√1−x2
(arctanx)′=11+x2
(arccotx)′=−11+x2
(xn)′=nxn−1
由导数的定义:f′(x)=limΔx→0f(x+Δx)−f(x)Δx
(xn)′=limΔx→0(x+Δx)n−xnΔx=limΔx→0∑nm=1CmnxmΔxn−m−xnΔx=limΔx→0C0nx0Δxn+C1nx1Δxn−1+……+Cn−1nxn−1Δx1+CnnxnΔx0−xnΔx=limΔx→0C0nx0Δxn+C1nx1Δxn−1+……+Cn−1nxn−1Δx1Δx=nxn−1
(sinx)′=cosx
(sinx)′=limΔx→0sin(x+Δx)−sinxΔx=limΔx→02cosx+Δx+x2sinx+Δx−x2Δx=limΔx→02cos(x+Δx2)sinΔx22Δx2=limΔx→0cos(x+Δx2)=cosx
(cosx)′=−sinx
(cosx)′=limΔx→0cos(x+Δx)−cosxΔx=limΔx→0−2sinx+Δx+x2sinx+Δx−x2Δx=limΔx→0−2sin(x+Δx2)sinΔx22Δx2=limΔx→0−sin(x+Δx2)=−sinx
(lnx)′=1x
(lnx)′=limΔx→0ln(x+Δx)−lnxΔx=limΔx→0ln(x+Δxx)Δx=limΔx→0ln(1+Δxx)Δxxx=1x
(logax)′=logaex
(logax)′=limΔx→0loga(x+Δx)−logaxΔx=limΔx→0loga(1+Δxx)Δx=limΔx→0loga(1+1xΔx)xΔxΔxxΔx=limΔx→0logaeΔxxΔx=limΔx→0ΔxxlogaeΔx=logaex
(ax)′=axlna
(ax)′=limΔx→0ax+Δx−axΔx=limΔx→0ax(aΔx−1)Δx=axlimΔx→0ΔxlnaΔx=axlna
(tanx)′=sec2x
(tanx)′=(sinxcosx)′=(sinx)′cosx−sinx(cosx)′cos2x=cos2x+sin2xcos2x=sec2x
(cotx)′=−csc2x
(cotx)′=(1tanx)′=(cosxsinx)′=(cosx)′sinx−cosx(sinx)′sin2x=−csc2x
(secx)′=secxtanx
(secx)′=(1cosx)′=1′cosx−1(cosx)′cos2x=sinxcos2x=secxtanx
(cscx)′=−cscxcotx
(cscx)′=(1sinx)′=1′sinx−1(sinx)′sin2x=−cosxsin2x=−cscxcotx
(arcsinx)′=1√1−x2
设 y=arcsinx,则x=siny
(arcsinx)′=(1siny)′=1cosy=1√1−sin2y=1√1−x2
(arccosx)′=−1√1−x2
设 y=arccosx,则x=cosy
(arccosx)′=(1cosy)′=−1siny=−1√1−cos2y=−1√1−x2
(arctanx)′=11+x2
设 y=arctanx,则x=tany
(arctanx)′=(1tany)′=1sec2y=11+tan2y=11+x2
(arccotx)′=−11+x2
设 y=arccotx,则x=coty
(arccotx)′=(1coty)′=−1csc2y=−11+cot2y=−11+x2
发表您的看法